Как повысить КПД электродвигателя: выбираем решение
В настоящее время электромеханические преобразователи считаются одними из самых эффективных технических решений, однако в процессе их эксплуатации возникает ряд проблем. К ним относятся потери энергии по различным причинам - магнитные, электрические и механические – которые сопровождаются тепловым излучением, а также шумом и вибрацией. Эти процессы являются результатом трения элементов, перемагничивания в магнитном поле сердечника якоря электродвигателя, а также скачков нагрузок. Но возможно ли сократить так называемые "утечки" и повысить КПД? Об этом мы поговорим в данной статье.
Повышение КПД асинхронных двигателей становится все более актуальной задачей в современной электротехнике. Согласно определению, электрические машины бывают синхронными и асинхронными. Синхронные машины характеризуются одинаковой частотой вращения ротора и магнитного поля. В то время как у асинхронных машин магнитное поле вращается с более высокой скоростью, чем ротор. Большинство (около 90%) двигателей в мире являются асинхронными, в связи с их простотой в изготовлении, надежностью, доступной ценой и низкими эксплуатационными затратами. Кроме того, КПД асинхронных двигателей значительно выше, чем у синхронных.
Однако у асинхронных двигателей также имеются некоторые недостатки. Высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой - все эти факторы приводят к лавинообразному росту силы тока и избыточным механическим нагрузкам при запуске, а также снижению КПД в периоды пониженной нагрузки. К тому же, точная регулировка скорости работы прибора также не является возможной.
Существуют различные подходы к повышению КПД асинхронных двигателей. Некоторые из них включают улучшение обмотки на статоре, использование систем управления частотой и высотой напряжения, а также измельчения материала магнитного ядра внутри машины. Кроме того, применение технологии вариации скорости постоянного тока с использованием системы бесконтактной передачи энергии является возможным способом повышения КПД асинхронных двигателей.
Таким образом, повышение КПД асинхронных двигателей - важная задача для современной электротехники. Существуют различные подходы к решению этой задачи, каждый из которых имеет свои преимущества и ограничения.
Возможности контроллеров-оптимизаторов включают в себя повышение КПД различного оборудования, используемого в различных отраслях, включая промышленность, сельское хозяйство и ЖКХ. Устройства этого типа помогают избежать перегрузок кронштейнов при запуске мешалок, а также компенсируют гидроудары в трубопроводах. Более того, контроллеры-оптимизаторы обеспечивают плавный запуск тяжелого и очень тяжелого оборудования, что невозможно сделать без использования подобной техники.
В статье рассказывается о том, как контроллеры-оптимизаторы могут помочь повысить КПД оборудования за более доступную цену, по сравнению с преобразователями. Например, по цене примерно от 90 до 140 тысяч рублей, можно приобрести устройство мощностью 90 кВт от отечественного производителя.
Достоинства и недостатки контроллеров-оптимизаторов
Контроллеры-оптимизаторы могут быстро реагировать на изменение напряжения, что снижает расходы электроэнергии на 30–40%, сокращает влияние реактивной нагрузки на сеть, повышает КПД привода, позволяет сократить расходы на конденсаторные компенсирующие устройства, а также продлевает срок службы оборудования и повышает экологичность производства. Отличительной особенностью контроллеров также является более доступная цена по сравнению с преобразователями частоты.
Однако стоит отметить, что контроллеры-оптимизаторы имеют ограничение в использовании в тех случаях, когда необходимо изменять скорость вращения электродвигателя. Таким образом, при выборе контроллера следует учитывать этот момент и выбирать оптимальный вариант, учитывая конкретную ситуацию и потребности.
Как выбрать лучшее оборудование для повышения КПД
Если вы планируете повысить КПД двигателя своего оборудования, важно правильно выбрать устройство для этой задачи. Выбор будет зависеть от особенностей работы оборудования. Если необходимо изменять скорость привода, то единственно подходящим решением будет приобретение преобразователя частоты. Однако, если скорость вращения двигателя остается неизменной или не требует большой точности изменения, то лучшим решением будет использование контроллеров-оптимизаторов. Они имеют более доступную стоимость по сравнению с преобразователями частоты.
На заметку: Как повысить КПД электродвигателя
КПД – ключевой фактор для эффективности работы электродвигателя. Его наиболее заметные влияющие факторы – степень загрузки по отношению к номинальной, конструкция и модель, степень износа, отклонение напряжения в сети от номинального. Также следует помнить, что перемотка электродвигателя может привести к снижению его КПД.
Для повышения эффективности работы электропривода, важно обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и частоту подаваемого тока, где это возможно. Но не в каждом случае необходимо или возможно реализовывать все из этих мер, так как реализация этих мер зависит от оборудования.
Существуют приборы для повышения КПД электродвигателя, такие как частотные преобразователи, изменяющие скорость вращения двигателя, изменив частоту питающего напряжения, и устройства плавного пуска, ограничивающие скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД двигателей с позиций экономической целесообразности и эффективности работы.
Повысить эффективность работы электродвигателя можно с помощью частотных преобразователей, которые изменяют однофазное или трехфазное напряжение с частотой 50 Гц на напряжение необходимой частоты (обычно в диапазоне от 1 Гц до 300-400 Гц, а иногда бывает и до 3000 Гц) и амплитуды. Частотные преобразователи подходят для использования в асинхронных двигателях.
Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.
Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».
Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.
Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.
Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.
Возможности, которые может предоставить частотный преобразователь, во многом зависят от соответствия его функциональных возможностей целям использования. Например, для оснащения электроприводов насосов и вентиляторов используются преобразователи с невысокой перегрузочной способностью и, зачастую, с U/f-управлением. При необходимости такие преобразователи могут повышать начальное значение выходного напряжения, с целью увеличения момента двигателя на низких частотах.
Устройства с векторным управлением являются более совершенными. Они регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Такие преобразователи устанавливаются на прокатные станы, конвейеры, подъемное, упаковочное оборудование и так далее.
В случае, если нужно выполнить контролируемое торможение двигателя, используется функция замедления, которую может обеспечить частотный преобразователь. Однако, если требуется интенсивное замедление, может потребоваться использование «частотника», оснащенного встроенными или внешними блоком торможения и тормозным резистором, или рекуперативным блоком торможения. При динамическом торможении двигатель переходит в генераторный режим и трансформирует механическую энергию в электрическую, которая возвращается в звено постоянного тока и либо рассеивается в виде тепла на сопротивлении тормозного резистора, либо возвращает энергию в сеть посредством рекуперации. Такой подход подходит для станкового и конвейерного оборудования.
Частотный преобразователь с обратной связью позволяет поддерживать постоянную скорость вращения при переменной нагрузке с более высокой точностью, чем преобразователь без обратной связи, что повышает качество технологического процесса в замкнутых системах. Подобные устройства широко используются в робототехнике, дерево- и металлообработке, в системах высокоточного позиционирования.
В последние годы цены на частотные преобразователи подвержены высокой волатильности, как отмечают финансисты. За прошедший год-полтора их стоимость значительно выросла. Такой рост цен можно объяснить не только колебаниями валютного курса, но и другими факторами.
В 2021 году стоимость частотных преобразователей мощностью 90 кВт от российских и зарубежных производителей варьировалась в районе от 200 до 700 тысяч рублей, в зависимости от производителя.
В данном случае мы имеем преобразователь частоты, который используется для асинхронного двигателя. Описав его рабочий принцип выше, можно утверждать, что данный прибор способен уменьшить затраты электроэнергии, обеспечить плавный запуск механизма, обеспечить точное регулирование скорости вращения при изменяющейся нагрузке и увеличить пусковой момент. Кроме того, все вышеперечисленное в сумме ведет к увеличению коэффициента полезного действия машины.
Несмотря на эти очевидные преимущества, следует отметить некоторые недостатки такого «частотника». В первую очередь, стоит заметить его достаточно высокую стоимость. Кроме того, в процессе эксплуатации преобразователь может создавать электромагнитные помехи.
Существуют устройства плавного пуска (УПП), которые используются для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не способны повысить КПД и могут применяться только для управления приводами с небольшой нагрузкой на валу.
Контроллеры-оптимизаторы - это разновидности УПП, которые позволяют повысить энергоэффективность двигателей. Они согласовывают крутящий момент с моментом нагрузки и способствуют снижению потребления электроэнергии на минимальных нагрузках на 30–40%. Контроллеры-оптимизаторы предназначены для приводов, которые не нуждаются в изменении числа оборотов двигателя.
Например, эскалатор потребляет большое количество энергии, и для снижения энергопотребления при помощи преобразователя частоты, нужно уменьшить скорость эскалатора. Однако, это невозможно, так как это увеличит время подъема пассажиров. Контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.
Контроллеры-оптимизаторы электродвигателя являются регуляторами напряжения питания, которые контролируют фазы тока и напряжения. Они гарантируют полное управление приводом на всех стадиях работы и предотвращают повышенное и пониженное напряжение, перегрузку, обрывы или нарушение чередования фаз. Путем изменения напряжения питания двигателя, контроллеры-оптимизаторы согласовывают значение механического момента, который развивает электродвигатель, с значением механического момента нагрузки на его валу. Последнее позволяет увеличить коэффициент мощности, а скорость вращения ротора электродвигателя остается неизменной.
Данное оборудование является самодостаточным и дополнительных устройств не требует. Кроме того, контроллер-оптимизатор обеспечивает прекращение отбора мощности во время динамической нагрузки, когда тиристоры закрыты и не проводят электрический ток. Управляющие импульсы открывают тиристоры при поступлении и закрывают переход тока через ноль. Отметим, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.
Фото: freepik.com